Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanoscale ; 16(14): 6876-6899, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506154

RESUMO

The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Terapia Combinada , Nanopartículas/metabolismo
3.
Mol Pharm ; 21(2): 373-392, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252032

RESUMO

Intervertebral disc degeneration (IVDD) is commonly associated with many spinal problems, such as low back pain, and significantly impacts a patient's quality of life. However, current treatments for IVDD, which include conservative and surgical methods, are limited in their ability to fully address degeneration. To combat IVDD, delivery-system-based therapy has received extensive attention from researchers. These delivery systems can effectively deliver therapeutic agents for IVDD, overcoming the limitations of these agents, reducing leakage and increasing local concentration to inhibit IVDD or promote intervertebral disc (IVD) regeneration. This review first briefly introduces the structure and function of the IVD, and the related pathophysiology of IVDD. Subsequently, the roles of drug-based and bioactive-substance-based delivery systems in IVDD are highlighted. The former includes natural source drugs, nonsteroidal anti-inflammatory drugs, steroid medications, and other small molecular drugs. The latter includes chemokines, growth factors, interleukin, and platelet-rich plasma. Additionally, gene-based and cell-based delivery systems are briefly involved. Finally, the limitations and future development of the combination of therapeutic agents and delivery systems in the treatment of IVDD are discussed, providing insights for future research.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Qualidade de Vida , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
4.
Phys Chem Chem Phys ; 25(45): 31206-31221, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955184

RESUMO

The biological characteristics of planar heterojunction nanomaterials and their interactions with biomolecules are crucial for the potential application of these materials in the biomedical field. This study employed molecular dynamics (MD) simulations to investigate the interactions between proteins with distinct secondary structures (a single α-helix representing the minimal oligomeric domain protein, a single ß-sheet representing the WW structural domain of the Yap65 protein, and a mixed α/ß structure representing the BBA protein) and a planar two-dimensional heterojunction (a GRA/h-BN heterojunction consisting of a graphene nanoplate (GRA) and a hexagonal boron nitride nanoplate (h-BN)). The results indicate that all three kinds of protein can be quickly and stably adsorbed on the GRA/h-BN heterojunction due to the strong van der Waals interaction, regardless of their respective types, structures and initial orientations. Moreover, the proteins exhibit a pronounced binding preference for the hBN region of the GRA/h-BN heterojunction. Upon adsorption, the α-helix structure of the minimal oligomeric domain protein experiences partial or complete denaturation. Conversely, while the secondary structure of the single ß-sheet and mixed α/ß structure (BBA protein) undergoes slight changes (focus on the coil and turn regions), the main α-helix and ß-sheet structures remain intact. The initial orientation significantly impacts the degree of protein adsorption and its position on the GRA/h-BN heterojunction. However, regardless of the initial orientation, proteins can ultimately be adsorbed onto the GRA/h-BN heterojunction. Furthermore, the initial orientation has a minor influence on the structural changes of proteins. Significantly, the combination of different secondary structures helps mitigate the denaturation of a single α-helix structure to some extent. Overall, the adsorption of proteins on GRA/h-BN is primarily driven by van der Waals and hydrophobic interactions. Proteins with ß-sheet or mixed structures exhibit stronger biocompatibility on the GRA/h-BN heterojunction. Our research elucidated the biological characteristics of GRA/h-BN heterojunction nanomaterials and their interactions with proteins possessing diverse secondary structures. It offers a theoretical foundation for considering heterojunction nanomaterials as promising candidates for biomedical applications.


Assuntos
Grafite , Grafite/química , Adsorção , Simulação de Dinâmica Molecular , Compostos de Boro/química
5.
Lasers Med Sci ; 38(1): 236, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843672

RESUMO

Conventional 5-aminolevulinic acid-photodynamic (ALA-PDT) therapy (10-20%) has been widely applied for moderate-to-severe acne. The aim of this study is to investigate the effects of non-ablative Q-switched 1064-nm Nd:YAG laser-assisted ALA-PDT with low concentration (2%) on the treatment of acne vulgaris. Enrolled patients were randomly assigned to 2 groups. One group received combined therapy of 2% ALA-PDT and non-ablative Q-switched 1064-nm Nd:YAG laser, and the other received only 2% ALA-PDT. Patients in each group had received 3-session treatments with 4-week intervals (week 0, 4, and 8). Sebum secretion, melanin index, erythema index, and transepidermal water loss (TEWL) were assessed at week 2, 8, 12, and 24. VISIA® skin image system score and global esthetic improvement scale (GAIS) were also evaluated. Twenty-four participants were enrolled and evenly randomized to two groups. Significant improvement in sebum secretion was noted in combined therapy group compared to the monotherapy group at week 12 (37.5% versus 16.3%), and the improvement would still be noted until week 24 (18.3% versus 17.4%). Combined group also showed more severe melanin index and erythema index after treatment. For VISIA® skin analysis, patients in combined group had better percentile ranking in porphyrins and red-light images. There were no significant differences in GAIS at the end of the follow-up between each group, whereas higher proportion of satisfaction was noted in combined group at week 2. With the assistance of laser, low concentrations (2%) of 5-ALA can provide effective phototoxic reactions in treating acne vulgaris. The satisfaction of patients is high with acceptable adverse effects.


Assuntos
Acne Vulgar , Lasers de Estado Sólido , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/uso terapêutico , Lasers de Estado Sólido/uso terapêutico , Melaninas , Resultado do Tratamento , Fotoquimioterapia/métodos , Acne Vulgar/tratamento farmacológico , Eritema/etiologia
6.
Lasers Surg Med ; 55(7): 680-689, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365922

RESUMO

BACKGROUND: Dynamic in vivo changes in melanin in melasma lesions after exposure to ultraviolet (UV) irradiation have not been described. OBJECTIVES: To determine whether melasma lesions and nearby perilesions demonstrated different adaptive responses to UV irradiation and whether the tanning responses were different among different locations on face. METHODS: We collected sequential images from real-time cellular resolution full-field optical coherence tomography (CRFF-OCT) at melasma lesions and perilesions among 20 Asian patients. Quantitative and layer distribution analyses for melanin were performed using a computer-aided detection (CADe) system that utilizes spatial compounding-based denoising convolutional neural networks. RESULTS: The detected melanin (D) is melanin with a diameter >0.5 µm, among which confetti melanin (C) has a diameter of >3.3 µm and corresponds to a melanosome-rich package. The calculated C/D ratio is proportional to active melanin transportation. Before UV exposure, melasma lesions had more detected melanin (p = 0.0271), confetti melanin (p = 0.0163), and increased C/D ratio (p = 0.0152) in the basal layer compared to those of perilesions. After exposure to UV irradiation, perilesions have both increased confetti melanin (p = 0.0452) and the C/D ratio (p = 0.0369) in basal layer, and this effect was most prominent in right cheek (p = 0.030). There were however no significant differences in the detected, confetti, or granular melanin areas before and after exposure to UV irradiation in melasma lesions in all the skin layers. CONCLUSIONS: Hyperactive melanocytes with a higher baseline C/D ratio were noted in the melasma lesions. They were "fixed" on the plateau and were not responsive to UV irradiation regardless of the location on face. Perilesions retained adaptability with a dynamic response to UV irradiation, in which more confetti melanin was shed, mainly in the basal layer. Therefore, aggravating effect of UV on melasma was mainly due to UV-responsive perilesions rather than lesions.


Assuntos
Melaninas , Melanose , Humanos , Melaninas/análise , Melanócitos/química , Melanócitos/patologia , Pele/patologia , Epiderme/patologia , Raios Ultravioleta
7.
Bioresour Technol ; 381: 129106, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37127172

RESUMO

The potential of green solvents, specifically deep eutectic solvents (DESs), has piqued the interest of researchers in the field of lignocellulose pretreatment. To enhance the enzymatic digestion efficiency of waste rice hull (RCH), an effective pretreatment approach was developed using the DES [AA][CATB], which was made with acetic acid (AA) and cetyltrimethylammonium bromide (CTAB). The results showed that [AA][CATB] improved enzymatic saccharification by 3.7 times compared to raw RCH and efficiently eliminated lignin and removed xylan. The improvement in enzymatic hydrolysis efficiency was then interpreted by a series of characterizations that showed a great morphological changed RCH with an obvious accessibility increase and a lignin surface area and hydrophobicity reduction. This work demonstrates that functional, and easily recoverable DESs have potential for improving the efficiency of lignocellulose pretreatment in biorefineries, providing a promising approach for developing green solvents and achieving more sustainable and efficient biorefinery processes.


Assuntos
Lignina , Oryza , Solventes Eutéticos Profundos , Tensoativos , Hidrólise , Solventes , Biomassa , Ácido Acético
8.
Cell ; 186(2): 398-412.e17, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669474

RESUMO

Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Hipotálamo , Camundongos , Animais , Humanos , Tecido Adiposo Marrom/metabolismo , Hipotálamo/metabolismo , Termogênese/fisiologia , Retina , Células Ganglionares da Retina , Glucose/metabolismo
9.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498953

RESUMO

Psoriasis is a chronic autoimmune disease, and until now, it remains an incurable disease. Therefore, the development of new drugs or agents that ameliorate the disease will have marketing potential. Taiwanofungus camphoratus (TC) is a specific fungus in Taiwan. It is demonstrated to have anticancer, anti-inflammation, and hepatoprotective effects. However, the effects of TC fermented extract on psoriasis are under investigation. In this research, we studied the ability of TC on antioxidative activity and the efficacy of TC on interleukin-17 (IL-17A)-induced intracellular oxidative stress, inflammation-relative, and proliferation-relative protein expression in human keratinocytes. The results of a DPPH radical scavenging assay, reducing power assay, and hydroxyl peroxide inhibition assay indicated that TC has a potent antioxidant ability. Furthermore, TC could reduce IL-17A-induced intracellular ROS generation and restore the NADPH level. In the investigation of pathogenesis, we discovered TC could regulate inflammatory and cell proliferation pathways via p-IKKα/p-p65 and p-mTOR/p-p70S6k signaling pathways in human keratinocytes. In conclusion, TC showed characteristics such as antioxidant, anti-inflammatory, and anti-psoriatic-associated responses. It is expected to be developed as a candidate for oxidative-stress-induced skin disorders or psoriasis treatment.


Assuntos
Produtos Biológicos , Queratinócitos , Psoríase , Humanos , Anti-Inflamatórios/farmacologia , Células HaCaT/efeitos dos fármacos , Células HaCaT/metabolismo , Interleucina-17/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Psoríase/patologia , Serina-Treonina Quinases TOR/metabolismo , Produtos Biológicos/farmacologia
10.
Materials (Basel) ; 15(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36363026

RESUMO

As a zero-dimensional (0D) nanomaterial, graphene quantum dot (GQD) has a unique physical structure and electrochemical properties, which has been widely used in biomedical fields, such as bioimaging, biosensor, drug delivery, etc. Its biological safety and potential cytotoxicity to human and animal cells have become a growing concern in recent years. In particular, the potential DNA structure damage caused by GQD is of great importance but still obscure. In this study, molecular dynamics (MD) simulation was used to investigate the adsorption behavior and the structural changes of single-stranded (ssDNA) and double-stranded DNA (dsDNA) on the surfaces of GQDs with different sizes and oxidation. Our results showed that ssDNA can strongly adsorb and lay flat on the surface of GQDs and graphene oxide quantum dots (GOQDs), whereas dsDNA was preferentially oriented vertically on both surfaces. With the increase of GQDs size, more structural change of adsorbed ssDNA and dsDNA could be found, while the size effect of GOQD on the structure of ssDNA and dsDNA is not significant. These findings may help to improve the understanding of GQD biocompatibility and potential applications of GQD in the biomedical field.

11.
Phys Chem Chem Phys ; 24(43): 26879-26889, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36317582

RESUMO

Due to its advantages of superior oxidation resistance, excellent chemical stability and non-toxicity, molybdenum disulfide (MoS2) has shown prospects in seawater desalination applications. In this manuscript, molecular dynamics (MD) simulation has been employed to explore the effect of charge distribution in MoS2 nanosheets on the desalination performance of the lamellar MoS2 membrane. It is found that the model considering the atomic charge better describes the transport behavior of salt solution in the membranes. The water flux passing through the lamellar MoS2 membrane would be influenced little by the atomic charges in the MoS2 nanosheet. The lamellar MoS2 membrane considering the atomic charge distribution shows a screening effect between Na+ and Cl- ions.

12.
Int J Pharm ; 626: 122130, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007849

RESUMO

Disulfiram (DSF), a Food and Drug Administration (FDA)-approved drug for the treatment of alcoholism, has been found to have antitumor activity. DSF showed better antitumor efficiency when it was used in combination with certain antitumor drugs. DSF plays an important role in cancer treatment. It has been used as multidrug resistance (MDR) modulator to reverse MDR and can also combine with copper ions (Cu2+), which will produce copper diethyldithiocarbamate (Cu[DDC]2) complex with antitumor activity. The synergistic targeted drug delivery for cancer treatment based on DSF, especially the combination with exogenous Cu2+ and its forms of administration, has attracted extensive attention in the biomedical field. In this review, we summarize these synergistic delivery systems, in the hope that they will contribute to the continuous optimization and development of more advanced drug delivery systems. Furthermore, we discuss the current limitation and future directions of DSF-based drug delivery systems in the field of tumor therapy. Hopefully, our work may inspire further innovation of DSF-based antitumor drug delivery systems.


Assuntos
Antineoplásicos , Neoplasias , Linhagem Celular Tumoral , Cobre/uso terapêutico , Dissulfiram , Ditiocarb/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Estados Unidos , United States Food and Drug Administration
13.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806013

RESUMO

Although nude mice are an ideal photoaging research model, skin biopsies result in inflammation and are rarely performed at baseline. Meanwhile, studies on antiphotoaging antioxidants or rejuvenation techniques often neglect the spontaneous reversal capacity. Full-field optical coherence tomography (FFOCT) can acquire cellular details noninvasively. This study aimed to establish a photoaging and sequential function reversal nude mice model assisted by an in vivo cellular resolution FFOCT system. We investigated whether a picosecond alexandrite laser (PAL) with a diffractive lens array (DLA) accelerated the reversal. In the sequential noninvasive assessment using FFOCT, a spectrophotometer, and DermaLab Combo®, the photodamage percentage recovery plot demonstrated the spontaneous recovery capacity of the affected skin by UVB-induced transepidermal water loss and UVA-induced epidermis thickening. A PAL with DLA not only accelerated skin barrier regeneration with epidermal polarity, but also increased dermal neocollagenesis, whereas the nonlasered group still had >60% collagen intensity loss and 40% erythema from photodamage. Our study demonstrated that FFOCT images accurately resemble the living tissue. The photoaging and sequential function reversal model provides a reference to assess the spontaneous recovery capacity of nude mice from photodamage. This model can be utilized to evaluate the sequential noninvasive photodamage and reversal effects after other interventions.


Assuntos
Envelhecimento da Pele , Animais , Camundongos , Camundongos Nus , Rejuvenescimento , Pele/patologia , Tomografia de Coerência Óptica , Raios Ultravioleta
14.
J Colloid Interface Sci ; 608(Pt 1): 435-445, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626987

RESUMO

HYPOTHESIS: Factor Va (FXa) and Xa (FVa) can assemble on the phosphatidylserine (PS) membrane (of platelet) to form prothrombinase complex and contribute to blood clotting. Very recently, we discovered that Ca-zeoliteacts as a type of reinforced activated inorganic platelet to enable assembly of prothrombinase complex and display an unusual zymogen (prothrombin) activation pattern. Inspired but not constrained by nature, it is of great interest to understand how FVa and FXa assembly on the inorganic surface (e.g., zeolites) and perform their biocatalytic function. EXPERIMENTS: Given the important role of FVa C1-C2 domains in the assembly and activity of the prothrombinase complex, in this work, molecular dynamics simulations were performed to investigate the binding details of FVa A3-C1-C2 domains on the PS membranes and Ca2+-LTA-type (CaA) zeolite surface. FINDINGS: We found that different from the natural PS membrane, FVa light chain repeatedly exhibits a strong C2 domain anchoring interaction on the CaA zeolite. It mainly arises from the porous surface structure of CaA zeolite and local highly dense solvation water clusters on the CaA zeolite surface restrict the movement of some lysine residues on the C2 domain. The anchoring interaction can be suppressed by reducing the surface negative charge density, so that FVa light chain can change from single-foot (only C2 domain) to double-foot (both C1-C2 domain) adsorption states on the zeolite surface. This double-foot adsorption state is similar to natural PS membrane systems, which may make FVa have higher cofactor activity.


Assuntos
Fator Va , Zeolitas , Sítios de Ligação , Fator Va/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Protrombina/metabolismo
15.
Diagnostics (Basel) ; 11(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34441432

RESUMO

Dark skin-type individuals have a greater tendency to have pigmentary disorders, among which melasma is especially refractory to treat and often recurs. Objective measurement of melanin amount helps evaluate the treatment response of pigmentary disorders. However, naked-eye evaluation is subjective to weariness and bias. We used a cellular resolution full-field optical coherence tomography (FF-OCT) to assess melanin features of melasma lesions and perilesional skin on the cheeks of eight Asian patients. A computer-aided detection (CADe) system is proposed to mark and quantify melanin. This system combines spatial compounding-based denoising convolutional neural networks (SC-DnCNN), and through image processing techniques, various types of melanin features, including area, distribution, intensity, and shape, can be extracted. Through evaluations of the image differences between the lesion and perilesional skin, a distribution-based feature of confetti melanin without layering, two distribution-based features of confetti melanin in stratum spinosum, and a distribution-based feature of grain melanin at the dermal-epidermal junction, statistically significant findings were achieved (p-values = 0.0402, 0.0032, 0.0312, and 0.0426, respectively). FF-OCT enables the real-time observation of melanin features, and the CADe system with SC-DnCNN was a precise and objective tool with which to interpret the area, distribution, intensity, and shape of melanin on FF-OCT images.

16.
Int J Biol Macromol ; 188: 369-374, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34371044

RESUMO

Sodium channels selectively conduct Na+ ions across cellular membrane with extraordinary efficiency, which is essential for initiating action potentials. However, how Na+ ions permeate the ionic channels remains obscure and ambiguous. With more than 40 conductance events from microsecond molecular dynamics simulation, the soft knock-on ion permeation mediated by water molecules was observed and confirmed by the free energy profile and electrostatic potential calculation in this study. During the soft knock-on process, the change of average distance between four oxygen atoms in Glu177-Glu177 plays a very important role for the permeation of Na+ ion. Exploration of the ionic conductance mechanism could provide a guideline for designing ion channel targeted drug.


Assuntos
Campylobacterales/química , Transporte de Íons/genética , Sódio/química , Canais de Sódio Disparados por Voltagem/química , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Campylobacterales/ultraestrutura , Glutamina/química , Simulação de Dinâmica Molecular , Oxigênio/química , Conformação Proteica , Eletricidade Estática , Água/química
17.
ACS Omega ; 6(16): 10936-10943, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056246

RESUMO

Graphene quantum dots (GQDs), a new quasi-zero-dimensional nanomaterial, have the advantages of a smaller transverse size, better biocompatibility, and lower toxicity. They have potential applications in biosensors, drug delivery, and biological imaging. Therefore, it is particularly important to understand the transport mechanism of the GQDs on the cell membrane. In particular, the effect of the GQD shapes on the translocation mechanism should be well understood. In this study, the permeation process of the GQDs with different shapes through a 1-palmitoyl-2-oleoylphosphatidylcholine membrane was studied using molecular dynamics. The results show that all small-sized GQDs with different shapes translocated through the lipid membrane at a nanosecond timescale. The GQDs tend to remain on the surface of the cell membrane; then, the corners of the GQDs spontaneously enter the cell membrane; and, finally, the entire GQDs enter the cell membrane and tend to stabilize in the middle of the cell membrane. Moreover, the GQDs do not induce notable damage to the cell membrane, indicating that they are less toxic to cells and can be used as a potential biomedical material.

18.
Mar Pollut Bull ; 169: 112517, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34049071

RESUMO

We developed a dimethylsulfide (DMS) module coupled to an ecological dynamics model studying the annual DMS cycle of the Yellow and East China seas (YECS). The model results showed that surface DMS concentrations ([DMS]) peaked in August along the coast, and there exhibited several DMS peaks offshore annually. In addition, surface [DMS] were higher in the Yellow Sea than that in the East China Sea. The annual mean surface [DMS] of the YECS reached to 4.55 nmol/L, and oceanic DMS emissions from this sea area was 6.78 µmol/(m2 day). Several sensitivity experiments demonstrated that phytoplankton community and sea water temperature exerted crucial effects on seasonal variations of surface [DMS]; and phytoplankton community or temperature changed the timing of surface DMS peak while photolysis affected the magnitude of [DMS]. Moreover, the effect size of phytoplankton community or water temperature varied spatially.


Assuntos
Fitoplâncton , Água do Mar , China , Oceanos e Mares , Estações do Ano
19.
Nanoscale Adv ; 3(4): 904-917, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36133293

RESUMO

Graphene quantum dots (GQDs) generate intrinsic fluorescence and improve the aqueous stability of graphene oxide (GO) while maintaining wide chemical adaptability and high adsorption capacity. Despite GO's remarkable advantages in bio-imaging, bio-sensing, and other biomedical applications, many experiments and simulations have focused on the biosafety of GQDs. Here, we review the findings on the biosafety of GQDs from experiments; then, we review the results from simulated interactions with biological membranes, DNA molecules, and proteins; finally, we examine the intersection between experiments and simulations. The biosafety results from simulations are explained in detail. Based on the literature and our experiments, we also discuss the trends toward GQDs with better biosafety.

20.
World J Biol Psychiatry ; 22(7): 526-534, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33143498

RESUMO

OBJECTIVES: Environmental and genetic factors play important roles in the development of schizophrenia (SCZ), bipolar disorder (BPD) or major depressive disorder (MDD). Some risk loci are identified with shared genetic effects on major psychiatric disorders. To investigate whether SNX29 gene played a significant role in these psychiatric disorders in the Han Chinese population. METHODS: We focussed on 11 single-nucleotide polymorphisms (SNPs) harbouring SNX29 gene and carried out case-control studies in patients with SCZ (n = 1248), BPD (n = 1344), or MDD (n = 1056), and 1248 healthy controls (HC) recruited from the Han Chinese population. We constructed weighted gene co-expression network analysis (WGCNA) and extracted significant modules by R package. RESULTS: We found that rs3743592 was significantly associated with MDD and rs6498263 with BPD in both allele and genotype distributions. Before correction, rs3743592 showed allelic and genotypic significance with SCZ, rs6498263 showed allelic significance with SCZ. WGCNA identified top 10 modules of co-expressed genes. Gene Ontology (GO) and pathway analysis were used to examine the functions of SNX29, which revealed that SNX29 was involved in the regulation of a number of biological processes, such as TGF-beta, ErbB, and Wnt signalling pathway, etc. CONCLUSIONS: Our results supported common risk factors in SNX29 might share among these three mental disorders in the Han Chinese population.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Nexinas de Classificação/genética , Povo Asiático/genética , Estudos de Casos e Controles , China , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...